A Transversely Isotropic Damage Model for Boom Clay: Special Issue: Thermo-Hydro-Mechanical Effects in Clay Host Rocks for Radioactive Waste Repositories

Research output: Contribution to journalArticle

Authors

Institutes & Expert groups

Documents & links

DOI

Abstract

Boom clay can be considered as a transversely isotropic geomaterial. However, due to lack of experimental evidence and data base, it is still difficult to describe the transversely isotropic plastic behavior. In this paper, we present, by means of an experimental approach, the main features of the mechanical properties of Boom clay. Then, combining the transversely isotropic elastic model and the modified Mohr–Coulomb criterion, a suitable constitutive model is introduced so as to fully describe the mechanical behavior of the studied material, in which, an elastic damage law which takes into consideration, the transversely isotropic effect, a plastic hardening law and a plastic damage law were introduced to describe the nonlinear elastic, hardening and softening behavior of Boom clay. As a preliminary step, the evolution law of both elastic moduli and Poisson’s ratio during the elastic stage was obtained by direct analysis of the test data. The synchronism of the elastic damage in both transversal and axial directions was proved by this method. Some of the parameters of the model in the elastic stage were also determined by direct analysis method and further verified by back analysis. Other unknown parameters in the model were determined by back analysis.

Details

Original languageEnglish
Pages (from-to)207-219
JournalRock Mechanics and Rock Engineering
Volume47
Issue number1
DOIs
StatePublished - Jan 2014

Keywords

  • Boom clay, transverse isotropy, damage, constitutive model, back analysis

ID: 320096