Assessing the contribution of cross-sections to the uncertainty of Monte Carlo calculations in micro- and nanodosimetry

Research output: Contribution to journalArticle

Authors

Institutes & Expert groups

  • IRSN - Institut Radioprotection Sûreté Nucléaire - France
  • Inserm - French National Institute of Health and Medical Research
  • PTB - Physikalisch-Technische Bundesanstalt - Germany
  • UKE - University Medical Center Hamburg-Eppendorf
  • IKET KIT INR - Karlsruhe Institute of Technology: Institut für Neutronenphysik und Reaktortechnik (INR) - Germany

Documents & links

DOI

Abstract

Within EURADOS Working Group 6 'Computational Dosimetry', the micro and nanodosimetry task group 6.2 has recently conducted a Monte Carlo (MC) exercise open to participants around the world. The aim of this exercise is to quantify the contribution to the uncertainty of micro and nanodosimetric simulation results arising from the use of different electron-impact cross-sections, and hence physical models, employed by different MC codes (GEANT4-DNA, PENELOPE, MCNP6, FLUKA, NASIC and PHITS). Comparison of the participants' simulation results for both micro and nanodosimetric quantities using different MC codes was the first step of the exercise. The deviation between results is due to different cross-sections but also different tracking methods and particle transport cutoff energies. The second step of the exercise will involve using identical cross-section datasets to account only for the other variations in the first step, thus enabling the determination of the uncertainty contribution due to different cross-sections. This paper presents a comparison of the MC simulation results obtained in the first part of the exercise. For the microdosimetric simulations, particularly in the configuration where the electron source is contained within the micrometric target, the choice of MC code has a small influence on the results. For the nanodosimetric results, on the other hand, the mean ionisation cluster size distribution (ICSD) was sensitive to the physical models used in the MC codes. The ICSD was therefore chosen to study the influence of different cross-section data on the uncertainty of simulation results.

Details

Original languageEnglish
Number of pages6
JournalRadiation Protection Dosimetry
VolumeNCY240
DOIs
StatePublished - 13 Dec 2018

Keywords

  • microdosimetry, nanodosimetry, Monte Carlo, simulation

ID: 4765892