Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure

Research output: Contribution to journalArticlepeer-review


  • Thomas Day Goodacre
  • A.V. Afanasjev
  • Anatoly (A.E.) Barzakh
  • L. Nies
  • Bruce A Marsh
  • Simon Sels
  • U. Perera
  • P. Ring
  • Frank Wienholtz
  • Andrei N. Andreyev
  • Piet Van Duppen
  • Numa A. Althubiti
  • Boris Andel
  • Dimitar Atanasov
  • Ricardo Manuel Dos Santos Augusto
  • Jonathan Billowes
  • Klaus Blaum
  • Thomas Elias Cocolios
  • Cubiss James G.
  • Gregory James Farooq-Smith
  • Dmitry V. Fedorov
  • Valentin N. Fedosseev
  • Kieran T. Flanagan
  • Liam Paul Gaffney
  • Lars Ghys
  • Alexander Gottberg
  • Mark Huyse
  • S. Kreim

Institutes & Expert groups

  • CERN - Conseil Européen pour la Recherche Nucléaire
  • Ernst-Moritz-Arndt-Universität Greifswald - Institut für Physik
  • KUL - Katholieke Universiteit Leuven
  • TUM - Technical University of Munich
  • UNIMAN - The University of Manchester
  • Mississippi State University
  • PNPI - Petersburg Nuclear Physics Institute
  • University of York
  • ASRC - Advanced Science Research Center - JAEA
  • Comenius University Bratislava
  • IPP - Max-Planck-Institut für Plasmaphysik
  • TRIUMF - Canada's particle accelerator centre
  • NRCKI - National research Center Kurchatov Institute
  • University of Liverpool
  • ISS - Institut für Strahlenschutz

Documents & links


Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source (VADLIS) with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the N=126 shell closure, the electromagnetic moments of 207Hg, and more precise mass values of 206–208Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at N=126 are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predominantly in the particle-hole channel in CDFT, since both are present in the calculations without pairing. However, the magnitude of the kink is still affected by the occupation of the ν1i11/2 and ν2g9/2 orbitals with a dependence on the relative energies as well as pairing.


Original languageEnglish
Article number054322
Pages (from-to)1-18
Number of pages18
JournalPhysical Review C
Publication statusPublished - 30 Nov 2021


  • Binding energy & masses, Nuclear structure & decays, Rare & new isotopes, Spectroscopic factors & electromagnetic moments, 190 ≤ A ≤ 219, Electric moment, Magnetic moment, Nuclear binding, Mass spectrometry, Nuclear density functional theory, Photoionization, Radioactive beams

ID: 7354915