How to predict seasonal weather and monsoons with radionuclide monitoring

Research output: Contribution to journalArticle

Authors

Institutes & Expert groups

  • ZAMG - Zentralanstalt für Meteorologie und Geodynamik
  • CTBTO - Comprehensive nuclear-Test-Ban Treaty Organization

Documents & links

Abstract

Monsoon in India is of particular importance for the $2 trillion economy, highly dependent on agriculture. Monsoon rains water two-thirds of India's harvest. However, the monsoon season also causes large-scale flooding, resulting in loss of human life and economic damage estimated around $7 billion annually. Beryllium-7 is a tracer that can be used to monitor the intensity of stratosphere-troposphere exchange, which varies in accordance with the annual cycle of the global atmospheric circulation (Hadley, Ferrel and Polar cells). Based on the beryllium-7 data collected globally as part of the monitoring of the Comprehensive Nuclear-Test-Ban Treaty, the presented empirical method demonstrates the possibility to predict the start, withdrawal and intensity of the Indian monsoon season. Onset can be forecasted with an unprecedented accuracy of ±3 days, 2 months in advance compared to 1-3 weeks in advance by traditional methods. Applying this new method will enable better preparation for economic and natural hazard impacts of the monsoon season in India. This method can also be extended to other regions where the movement of Hadley cells governs monsoon onset and withdrawal

Details

Original languageEnglish
Article number2729
Pages (from-to)1-6
Number of pages6
JournalScientific Reports
Volume9
DOIs
Publication statusPublished - 25 Feb 2019

Keywords

  • Atmospheric dynamics, Enviromental impact, experimental particle physics, governance, natural hazards

ID: 5038418