Abstract
Intragranular bubbles grow in the nuclear fuel by diffusion and precipitation of fission gases, mainly xenon; and are ultimately destroyed, under irradiation, by fission fragments. This article will attempt to determine the in-pile bubble distributions taking into account the evolution of the concentration profile around a bubble during its growth and the destruction process by fission fragments. From these distributions a relation between the bubble mean radius and the diffusion coefficient of xenon can be established, allowing the determination, from experimental measurements of intragranular bubble sizes, of the in-pile Xe diffusion coefficient in UO2. The estimated activation energy (0.9 eV) is about one order of magnitude lower than the widely used value of 3.9 eV determined from out-of-pile experiments. This effect can be attributed to the presence of point defects created by the irradiation.
Details
Original language | English |
---|
Pages (from-to) | 461-472 |
---|
Journal | Journal of Nuclear Materials |
---|
Volume | 374 |
---|
Issue number | 3 |
---|
DOIs | |
---|
Publication status | Published - 15 Mar 2008 |
---|