Interaction of dislocations with carbon-decorated dislocation loops in bcc Fe: an atomistic study

Research output: Contribution to journalArticle


Documents & links


We have carried out MD simulations to investigate how the trapping of 1/2〈111〉 dislocation loops at thermally stable carbon–vacancy complexes, known to form under irradiation, affects the interaction of these dislocation loops with dislocations in bcc Fe. We have considered loops of size 1 and 3.5 nm, which represent experimentally invisible and visible defects, respectively. The obtained results point at the strong suppression of the drag of carbon-decorated loops by dislocations. In the case of direct interaction between dislocation and carbon-decorated loops, invisible loops are found to act as obstacles whose strength is at least twice as high compared to that of undecorated ones. Additional strengthening due to the carbon decoration on the visible loops was also regularly registered. The reasons for the additional strengthening have been rationalized and discussed. It is demonstrated that carbon decoration/segregation at dislocation loops affects not only accumulation of radiation damage under prolonged irradiation but also alters the post-irradiation plastic deformation mechanisms. For the first time, we provide evidence that undetectable dislocation loops decorated by carbon do contribute to the radiation hardening.


Original languageEnglish
Pages (from-to)455402-455402
JournalJournal of Physics: Condensed Matter
Issue number45
Publication statusPublished - 1 Oct 2012


  • harderning, carbon, fe-based alloys

ID: 365362