Luminescence efficiency of Al2O3:C,Mg radiophotoluminescence in charged particle beams

Research output: Contribution to journalArticle

Institutes & Expert groups

  • PAS - Institute of physics - Polish academy of sciences

Documents & links

DOI

Abstract

In hadron therapy, it is important to evaluate how sensitive a detector is upon radiation with varying ionization densities, i.e. linear energy transfer (LET), as the LET changes when penetrating through material. For solid-state detectors, it is therefore essential to characterize the luminescence efficiency (ηHT,γ) of the detector as a function of LET. In this work, we investigate the radiophotuminescence (RPL) response from Al2O3:C,Mg 2D films and crystals exposed to various high LET beams (1H, 4He, 12C, 28Si and 56Fe). The measured ηHT,γ curve from RPL films and crystals as function of the particle LET is compared with the ηHT,γ curve from Al2O3:C OSL samples. Furthermore, a 2D RPL image, from Al2O3:C,Mg films irradiated with a 61.3 MeV 40mm diameter broad proton beam, depicts a 2D depth dose distribution of the Bragg peak and demonstrates similar LET dependence as from the luminescence efficiency curve. The ηHT,γ curves are consistent with Birks’ law, where we observe expected quenching for increasing LET

Details

Original languageEnglish
Pages (from-to)4
Number of pages54
JournalRadiation Measurements
Volume123
DOIs
StatePublished - 28 Dec 2018

Keywords

  • Radiophotoluminescence, 2D dosimetry QA, Radiotherapy, RPL film

ID: 5102087