Partitioning and transmutation contribution of MYRRHA to an EU strategy for HLW management and main achievements of MYRRHA related FP7 and H2020 projects: MYRTE, MARISA, MAXSIMA, SEARCH, MAX, FREYA, ARCAS

Research output: Contribution to journalArticle

Bibtex - Download

@article{4994dd123d00474b84be0a3b9e7aa65a,
title = "Partitioning and transmutation contribution of MYRRHA to an EU strategy for HLW management and main achievements of MYRRHA related FP7 and H2020 projects: MYRTE, MARISA, MAXSIMA, SEARCH, MAX, FREYA, ARCAS",
abstract = "Today, nuclear power produces 11{\%} of the world’s electricity. Nuclear power plants produce virtually no greenhouse gases or air pollutants during their operation. Emissions over their entire life cycle are very low. Nuclear energy’s potential is essential to achieving a deeply decarbonized energy future in many regions of the world as of today and for decades to come, the main value of nuclear energy lies in its potential contribution to decarbonizing the power sector. Nuclear energy’s future role, however, is highly uncertain for several reasons: chiefly, escalating costs and, the persistence of historical challenges such as spent fuel andradioactive waste management. Advanced nuclear fuel recycling technologies can enable full use of natural energy resources while minimizing proliferation concerns as well as the volume and longevity of nuclear waste.Partitioning and Transmutation (P&T) has been pointed out in numerous studies as the strategy that can relax constraints on geological disposal, e.g. by reducing the waste radiotoxicity and the footprint of the underground facility. Therefore, a special effort has been made to investigate the potential role of P&T and the related options for waste management all along the fuel cycle. Transmutation based on critical or sub-critical fast spectrum transmuters should be evaluated in order to assess its technical and economic feasibility and capacity, which could ease deep geological disposal implementation.",
keywords = "MYRRHA, HLW managment, Partitioning & Transmutation, MYRTE, MARISA, SEARCH, ARCAS, MAXSIMA, FREYA, MAX",
author = "{A{\"i}t Abderrahim}, Hamid and Peter Baeten and Alain Sneyers and Marc Schyns and Paul Schuurmans and Anatoly Kochetkov and {Van den Eynde}, Gert and Jean-Luc Biarrotte",
note = "Score=10",
year = "2020",
month = "5",
day = "5",
doi = "10.1051/epjn/2019038",
language = "English",
volume = "6",
pages = "1--8",
journal = "EPJ N - Nuclear Sciences and Technologies",
issn = "2491-9292",
publisher = "EDP Open",
number = "33",

}

RIS - Download

TY - JOUR

T1 - Partitioning and transmutation contribution of MYRRHA to an EU strategy for HLW management and main achievements of MYRRHA related FP7 and H2020 projects: MYRTE, MARISA, MAXSIMA, SEARCH, MAX, FREYA, ARCAS

AU - Aït Abderrahim, Hamid

AU - Baeten, Peter

AU - Sneyers, Alain

AU - Schyns, Marc

AU - Schuurmans, Paul

AU - Kochetkov, Anatoly

AU - Van den Eynde, Gert

AU - Biarrotte, Jean-Luc

N1 - Score=10

PY - 2020/5/5

Y1 - 2020/5/5

N2 - Today, nuclear power produces 11% of the world’s electricity. Nuclear power plants produce virtually no greenhouse gases or air pollutants during their operation. Emissions over their entire life cycle are very low. Nuclear energy’s potential is essential to achieving a deeply decarbonized energy future in many regions of the world as of today and for decades to come, the main value of nuclear energy lies in its potential contribution to decarbonizing the power sector. Nuclear energy’s future role, however, is highly uncertain for several reasons: chiefly, escalating costs and, the persistence of historical challenges such as spent fuel andradioactive waste management. Advanced nuclear fuel recycling technologies can enable full use of natural energy resources while minimizing proliferation concerns as well as the volume and longevity of nuclear waste.Partitioning and Transmutation (P&T) has been pointed out in numerous studies as the strategy that can relax constraints on geological disposal, e.g. by reducing the waste radiotoxicity and the footprint of the underground facility. Therefore, a special effort has been made to investigate the potential role of P&T and the related options for waste management all along the fuel cycle. Transmutation based on critical or sub-critical fast spectrum transmuters should be evaluated in order to assess its technical and economic feasibility and capacity, which could ease deep geological disposal implementation.

AB - Today, nuclear power produces 11% of the world’s electricity. Nuclear power plants produce virtually no greenhouse gases or air pollutants during their operation. Emissions over their entire life cycle are very low. Nuclear energy’s potential is essential to achieving a deeply decarbonized energy future in many regions of the world as of today and for decades to come, the main value of nuclear energy lies in its potential contribution to decarbonizing the power sector. Nuclear energy’s future role, however, is highly uncertain for several reasons: chiefly, escalating costs and, the persistence of historical challenges such as spent fuel andradioactive waste management. Advanced nuclear fuel recycling technologies can enable full use of natural energy resources while minimizing proliferation concerns as well as the volume and longevity of nuclear waste.Partitioning and Transmutation (P&T) has been pointed out in numerous studies as the strategy that can relax constraints on geological disposal, e.g. by reducing the waste radiotoxicity and the footprint of the underground facility. Therefore, a special effort has been made to investigate the potential role of P&T and the related options for waste management all along the fuel cycle. Transmutation based on critical or sub-critical fast spectrum transmuters should be evaluated in order to assess its technical and economic feasibility and capacity, which could ease deep geological disposal implementation.

KW - MYRRHA

KW - HLW managment

KW - Partitioning & Transmutation

KW - MYRTE

KW - MARISA

KW - SEARCH

KW - ARCAS

KW - MAXSIMA

KW - FREYA

KW - MAX

UR - https://ecm.sckcen.be/OTCS/llisapi.dll/open/42599459

U2 - 10.1051/epjn/2019038

DO - 10.1051/epjn/2019038

M3 - Article

VL - 6

SP - 1

EP - 8

JO - EPJ N - Nuclear Sciences and Technologies

JF - EPJ N - Nuclear Sciences and Technologies

SN - 2491-9292

IS - 33

M1 - 2019038

ER -

ID: 7059658