Photonic crystal fibers with material anisotropy

Research output: Contribution to journalArticlepeer-review

Standard

Photonic crystal fibers with material anisotropy. / Berghmans, Francis; Kotynski, Rafal; Antkowiak, Maciej; Thienpont, Hugo; Panajotov, Krassimir; D'hondt, Pierre (Peer reviewer); Van Uffelen, Marco (Peer reviewer).

In: Optical and Quantum Electronics, Vol. 37, 2005, p. 253-264.

Research output: Contribution to journalArticlepeer-review

Harvard

Berghmans, F, Kotynski, R, Antkowiak, M, Thienpont, H, Panajotov, K, D'hondt, P & Van Uffelen, M 2005, 'Photonic crystal fibers with material anisotropy', Optical and Quantum Electronics, vol. 37, pp. 253-264. https://doi.org/10.1007/s11082-005-1166-8

APA

Berghmans, F., Kotynski, R., Antkowiak, M., Thienpont, H., Panajotov, K., D'hondt, P., & Van Uffelen, M. (2005). Photonic crystal fibers with material anisotropy. Optical and Quantum Electronics, 37, 253-264. https://doi.org/10.1007/s11082-005-1166-8

Vancouver

Berghmans F, Kotynski R, Antkowiak M, Thienpont H, Panajotov K, D'hondt P et al. Photonic crystal fibers with material anisotropy. Optical and Quantum Electronics. 2005;37:253-264. https://doi.org/10.1007/s11082-005-1166-8

Author

Berghmans, Francis ; Kotynski, Rafal ; Antkowiak, Maciej ; Thienpont, Hugo ; Panajotov, Krassimir ; D'hondt, Pierre ; Van Uffelen, Marco. / Photonic crystal fibers with material anisotropy. In: Optical and Quantum Electronics. 2005 ; Vol. 37. pp. 253-264.

Bibtex - Download

@article{8bba35b5bee345cfa0c18a1debb5aaf8,
title = "Photonic crystal fibers with material anisotropy",
abstract = "In this paper we are modeling the interplay of material and form birefringence in photonic crystal fibers. We introduce an efficient numerical method for the calculation of the modal structure. Our approach relies solving the fully vectorial wave equation for the transverse magnetic field and the respective propagation constants using a plane wave expansion. The method accounts for a simple form of material anisotropy. Our analysis is relevant to certain applications areas, and in particular to fiber sensing, where material birefringence arises for instance due to transversally apllied mechanical stress. We analyze the influence of material birefringence and the state of polarization of the fundamental mode.",
keywords = "electromagnetic modeling, birefringence, photonic crystal fibers",
author = "Francis Berghmans and Rafal Kotynski and Maciej Antkowiak and Hugo Thienpont and Krassimir Panajotov and Pierre D'hondt and {Van Uffelen}, Marco",
note = "Score = 10",
year = "2005",
doi = "10.1007/s11082-005-1166-8",
language = "English",
volume = "37",
pages = "253--264",
journal = "Optical and Quantum Electronics",
issn = "0306-8919",
publisher = "Springer",

}

RIS - Download

TY - JOUR

T1 - Photonic crystal fibers with material anisotropy

AU - Berghmans, Francis

AU - Kotynski, Rafal

AU - Antkowiak, Maciej

AU - Thienpont, Hugo

AU - Panajotov, Krassimir

A2 - D'hondt, Pierre

A2 - Van Uffelen, Marco

N1 - Score = 10

PY - 2005

Y1 - 2005

N2 - In this paper we are modeling the interplay of material and form birefringence in photonic crystal fibers. We introduce an efficient numerical method for the calculation of the modal structure. Our approach relies solving the fully vectorial wave equation for the transverse magnetic field and the respective propagation constants using a plane wave expansion. The method accounts for a simple form of material anisotropy. Our analysis is relevant to certain applications areas, and in particular to fiber sensing, where material birefringence arises for instance due to transversally apllied mechanical stress. We analyze the influence of material birefringence and the state of polarization of the fundamental mode.

AB - In this paper we are modeling the interplay of material and form birefringence in photonic crystal fibers. We introduce an efficient numerical method for the calculation of the modal structure. Our approach relies solving the fully vectorial wave equation for the transverse magnetic field and the respective propagation constants using a plane wave expansion. The method accounts for a simple form of material anisotropy. Our analysis is relevant to certain applications areas, and in particular to fiber sensing, where material birefringence arises for instance due to transversally apllied mechanical stress. We analyze the influence of material birefringence and the state of polarization of the fundamental mode.

KW - electromagnetic modeling

KW - birefringence

KW - photonic crystal fibers

UR - http://ecm.sckcen.be/OTCS/llisapi.dll/open/ezp_27220

UR - http://knowledgecentre.sckcen.be/so2/bibref/2546

U2 - 10.1007/s11082-005-1166-8

DO - 10.1007/s11082-005-1166-8

M3 - Article

VL - 37

SP - 253

EP - 264

JO - Optical and Quantum Electronics

JF - Optical and Quantum Electronics

SN - 0306-8919

ER -

ID: 111996