Abstract
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV=nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in 182−188Hg were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed
and of oblate nature, while a larger deformation for the excited 0þ state was noted in 182;184Hg. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.
Details
Original language | English |
---|
Pages (from-to) | 1-5 |
---|
Journal | Physical review Letters |
---|
Volume | 112 |
---|
Issue number | 162701 |
---|
DOIs | |
---|
Publication status | Published - 25 Apr 2014 |
---|