The Cellular and Molecular Effects of Ionizing Radiation and Iodine Deficiency on Non-Cancerous Thyroid Cells

Research output: ThesisMaster's thesis

Bibtex - Download

@phdthesis{bce12220d72b45cea6b82cf79fb17e26,
title = "The Cellular and Molecular Effects of Ionizing Radiation and Iodine Deficiency on Non-Cancerous Thyroid Cells",
abstract = "Introduction: Post-Chernobyl epidemiological studies appointed ionizing radiation (IR) exposure as high-risk factor for thyroid cancer development. Currently, the general population is increasingly exposed to IR deriving from natural and human-made sources. In particular, low-dose IR is of major concern. On the other hand, epidemiological studies demonstrated that iodine deficiency (ID), affecting more than 2 billion individuals worldwide, is also a determinant in thyroid cancer development. However, there are still uncertainties about the combined effects of ID and low-dose IR exposure on thyroid cells. We hypothesize that low-dose IR and ID both stress thyroid cells by an enhanced production of reactive oxygen species (ROS), affecting proliferation and survival.Material & methods: Rat thyroid PCCL3 cells were cultured in iodine-deficient or iodine-sufficient conditions for 6h, 24h or 48h and were irradiated with low (0 Gy, 0.05 Gy, 0.1 Gy), intermediate (0.5 Gy) or high (3 Gy) X-ray doses. Protein expressions of Catalase, (p)AKT1, (p)STAT3, NFkB p52 were determined by Western blot. ROS production and gH2AX/53BP1 foci were dtected by respectively CM-H2DCFDA fluorescent imaging and immunocytochemistry visualized using fluorescence microscopy. Finally, cell cycle distribution was examined by a BrdU/7-AAD assay using flow cytometry. Statistical significance (p",
keywords = "radiation, thyroid cancer, iodine deficeincy",
author = "Noami Daems and Hanane Derradji and Sarah Baatout",
note = "Score=10",
year = "2016",
month = "6",
day = "13",
language = "English",
publisher = "UHasselt - Universiteit Hasselt",

}

RIS - Download

TY - THES

T1 - The Cellular and Molecular Effects of Ionizing Radiation and Iodine Deficiency on Non-Cancerous Thyroid Cells

AU - Daems, Noami

A2 - Derradji, Hanane

A2 - Baatout, Sarah

N1 - Score=10

PY - 2016/6/13

Y1 - 2016/6/13

N2 - Introduction: Post-Chernobyl epidemiological studies appointed ionizing radiation (IR) exposure as high-risk factor for thyroid cancer development. Currently, the general population is increasingly exposed to IR deriving from natural and human-made sources. In particular, low-dose IR is of major concern. On the other hand, epidemiological studies demonstrated that iodine deficiency (ID), affecting more than 2 billion individuals worldwide, is also a determinant in thyroid cancer development. However, there are still uncertainties about the combined effects of ID and low-dose IR exposure on thyroid cells. We hypothesize that low-dose IR and ID both stress thyroid cells by an enhanced production of reactive oxygen species (ROS), affecting proliferation and survival.Material & methods: Rat thyroid PCCL3 cells were cultured in iodine-deficient or iodine-sufficient conditions for 6h, 24h or 48h and were irradiated with low (0 Gy, 0.05 Gy, 0.1 Gy), intermediate (0.5 Gy) or high (3 Gy) X-ray doses. Protein expressions of Catalase, (p)AKT1, (p)STAT3, NFkB p52 were determined by Western blot. ROS production and gH2AX/53BP1 foci were dtected by respectively CM-H2DCFDA fluorescent imaging and immunocytochemistry visualized using fluorescence microscopy. Finally, cell cycle distribution was examined by a BrdU/7-AAD assay using flow cytometry. Statistical significance (p

AB - Introduction: Post-Chernobyl epidemiological studies appointed ionizing radiation (IR) exposure as high-risk factor for thyroid cancer development. Currently, the general population is increasingly exposed to IR deriving from natural and human-made sources. In particular, low-dose IR is of major concern. On the other hand, epidemiological studies demonstrated that iodine deficiency (ID), affecting more than 2 billion individuals worldwide, is also a determinant in thyroid cancer development. However, there are still uncertainties about the combined effects of ID and low-dose IR exposure on thyroid cells. We hypothesize that low-dose IR and ID both stress thyroid cells by an enhanced production of reactive oxygen species (ROS), affecting proliferation and survival.Material & methods: Rat thyroid PCCL3 cells were cultured in iodine-deficient or iodine-sufficient conditions for 6h, 24h or 48h and were irradiated with low (0 Gy, 0.05 Gy, 0.1 Gy), intermediate (0.5 Gy) or high (3 Gy) X-ray doses. Protein expressions of Catalase, (p)AKT1, (p)STAT3, NFkB p52 were determined by Western blot. ROS production and gH2AX/53BP1 foci were dtected by respectively CM-H2DCFDA fluorescent imaging and immunocytochemistry visualized using fluorescence microscopy. Finally, cell cycle distribution was examined by a BrdU/7-AAD assay using flow cytometry. Statistical significance (p

KW - radiation

KW - thyroid cancer

KW - iodine deficeincy

UR - http://ecm.sckcen.be/OTCS/llisapi.dll/open/20240375

M3 - Master's thesis

PB - UHasselt - Universiteit Hasselt

ER -

ID: 1637118