The electron affinity of astatine

Research output: Contribution to journalArticlepeer-review


  • David Leimbach
  • Jochen Ballof
  • Ferran Boix Pamies
  • Katerina Chrysalidis
  • Valentin N. Fedosseev
  • Ronald Fernando Garcia Ruiz
  • Camillo Granados
  • Karl Johnston
  • Bruce A Marsh
  • Annie Ringvall-Moberg
  • Ralf Erik Rossel
  • Shane Wilkins
  • Sebastian Rothe
  • Julia Karls
  • Lars bengtsson
  • Jessica Warbinek
  • Jakob Welander
  • Reinhard Heinke
  • Dominik Studer
  • Klaus D.A. Wendt
  • Yangyang Guo
  • Anastasia Borschevsky
  • Ephraim Eliav
  • Pavel Molkanov
  • Dmitry Fedorov
  • Oliver Forstner
  • Nicolas Galland
  • Agota Koszorus
  • Moa K. Kristiansson
  • Yuan Liu
  • Lukas F. Pasteka
  • Mikael Reponen
  • Adam Vernon

Institutes & Expert groups

  • CERN - Conseil Européen pour la Recherche Nucléaire
  • University of Gothenburg - Sahlgren Academy - Institute of Clinical Sciences
  • University of Groningen
  • JGU - Johannes Gutenberg University Mainz - Institut für Physik
  • PNPI - Petersburg Nuclear Physics Institute
  • Tel Aviv University
  • FSU TPI - Friedrich-Schiller-University Jena: Theoretisch-Physikalisches Institut
  • Université de Nantes
  • KUL - Katholieke Universiteit Leuven
  • SU - Stockholm University
  • ORNL - Oak Ridge National Laboratory
  • Comenius University Bratislava
  • UNIMAN - The University of Manchester
  • University of Jyväskylä - Finland
  • University of Liverpool - Oliver Lodge Laboratory

Documents & links


One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron–electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.


Original languageEnglish
Article number3824
Pages (from-to)1-9
Number of pages9
JournalNature Communications
Publication statusPublished - 30 Jul 2020


  • Electron affinity, Isotopes, Radionuclide therapy, Measurements

ID: 7030433