Abstract
Since the ITER divertor design includes tungsten monoblocks in the vertical target where heat loads are maximal, the design to protect leading edges as well as technology R&D for high performance armor- heat sink joint were necessary to be implemented. In the R&D, the availability of the technology was demonstrated by high heat flux test of tungsten monoblock components. Not systematically but frequently macro-cracks appeared at the middle of monoblocks after 20 MW/m 2 loading. The initiation of such macro-cracks was considered to be due to cyclic exposure to high temperature, ∼20 0 0 °C, where creep, recrystallization and low cycle fatigue were concerned. To understand correlation between the macro-crack appearance and mechanical properties and possible update of acceptance criteria in the material specification, an activity to characterize the tungsten monoblocks was launched.
Details
Original language | English |
---|
Pages (from-to) | 616-622 |
---|
Number of pages | 7 |
---|
Journal | Nuclear Materials and Energy |
---|
Volume | 9 |
---|
DOIs | |
---|
Publication status | Published - 18 Jul 2016 |
---|